Step of Proof: eq_int_eq_true_elim
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
eq
int
eq
true
elim
:
i
,
j
:
. ((
i
=
j
) = tt)
(
i
=
j
)
latex
by ((UnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
i
:
C1:
2.
j
:
C1:
3. (
i
=
j
) = tt
C1:
i
=
j
C
.
Definitions
,
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
btrue
wf
,
eq
int
wf
,
bool
wf
origin